Publications on Bio-inspired Geotechnics

[1] S. Huang, N. Mahabadi, and J. Tao. “Penetration and Relaxation Behaviors of Dry Granular Materials: Insights from Photoelasticity”. In: Geo-Congress 2022. Charlotte, NC, Mar. 2022.

[2] S. Huang and J. Tao. “Bioinspired Horizontal Self-Burrowing Robot”. In: Geo-Congress 2022. Charlotte, NC, 2022.

[3] Y. Tang and J. Tao. “Effect of Rotational Cone on Penetration Resistance and Its Implication to the Design of a Bio-inspired Self-Burrowing Probe”. In: Geo-Congress 2022. Charlotte, NC, Mar. 2022.

[4] Z. Yi and J. Tao. “Vibrational Self-burrowing Robot for Wireless Underground Communication”. In: Geo-Congress 2022. Charlotte, NC, Mar. 2022.

[5] S. Huang, N. Mahabadi, and J. Tao. “Visualization of a Model Razor Clam Interacting with Dry Granular Materials Using Photoelasticity”. In: American Physical Society March Meeting 2021. Zoom, Mar. 2021.

[6] D. Li, S. Huang, Y. Tang, et al. “Compliant Fins for Locomotion in Granular Media”. In: IEEE Robotics and Automation Letters (2021), pp. 1-1. DOI: 10.1109/LRA.2021.3084877.

[7] A. Martinez, J. DeJong, I. Akin, et al. “Bio-Inspired Geotechnical Engineering: Principles, Current Work, Opportunities and Challenges”. In: Géotechnique (Apr. 2021), pp. 1-48. DOI: 10.1680/jgeot.20.P.170.

[8] Y. Tang and J. Tao. “Effect of Rotation on Penetration: Toward a Seed Awn-Inspired Self-Burrowing Probe”. In: IFCEE 2021. Dallas, TX: American Society of Civil Engineers, May. 2021, pp. 149-159. DOI: 10.1061/9780784483428.016.

[9] J. Tao. “Burrowing Soft Robots Break New Ground”. In: Science Robotics 6.55 (Jun. 2021). DOI: 10.1126/scirobotics.abj3615.

[10] Y. Zhong, Y. Gao, and J. Tao. “Bio-Inspired Underground Communication Using Seismic Waves”. In: IFCEE 2021. Dallas, TX: American Society of Civil Engineers, May. 2021, pp. 139-148. DOI: 10.1061/9780784483428.015.

[11] S. Huang, N. Mahabadi, and J. Tao. “Impact of Shell Opening of a Model Razor Clam on the Evolution of Force Chains in Granular Media”. In: Geo-Congress 2021. Minneapolis, Minnesota: ASCE, Feb. 2020, pp. 272-281. DOI: 10.1061/9780784482834.030.

[12] S. Huang, Y. Tang, H. Bagheri, et al. “Effects of Friction Anisotropy on Upward Burrowing Behavior of Soft Robots in Granular Materials”. In: Advanced Intelligent Systems 2.6 (2020), p. 1900183. DOI: 10.1002/aisy.201900183.

[13] S. Huang and J. Tao. “Bio-Inspired Dual-Anchor Burrowing: Effect of Vertical Curvature of the Shell”. In: Geo-Congress 2020. Minneapolis, Minnesota: ASCE, Feb. 2020, pp. 282-292. DOI: 10.1061/9780784482834.031.

[14] S. Huang and J. Tao. “Modeling Clam-inspired Burrowing in Dry Sand Using Cavity Expansion Theory and DEM”. In: Acta Geotechnica 15.8 (Aug. 2020), pp. 2305-2326. DOI: 10.1007/s11440-020-00918-8.

[15] Y. Tang, S. Huang, and J. Tao. “Effect of Rotation on Seeds’ Self-Burial Process: Insights from DEM Simulations”. In: Geo-Congress 2020. Minneapolis, Minnesota: ASCE, Feb. 2020, pp. 293-301. DOI: 10.1061/9780784482834.032.

[16] J. Tao, S. Huang, and Y. Tang. “SBOR: A Minimalistic Soft Self-Burrowing-out Robot Inspired by Razor Clams”. In: Bioinspiration & Biomimetics 15.5 (Jul. 2020), p. 055003. DOI: 10.1088/1748-3190/ab8754.

[17] J. Tao, S. Huang, and Y. Tang. “Bioinspired Self-Burrowing-Out Robot in Dry Sand”. In: Journal of Geotechnical and Geoenvironmental Engineering 145.12 (Dec. 2019), p. 02819002. DOI: 10.1061/(ASCE)GT.1943-5606.0002177.

[18] S. Huang and J. Tao. “Modeling of the Burrowing Mechanism by Razor Clam: Role of Penetration Kinematics”. In: IFCEE 2018. Orlando, Florida: ASCE, Jun. 2018, pp. 547-556. DOI: 10.1061/9780784481585.053.

[19] S. Huang and J. Tao. “The Interplay between Shell Opening and Foot Penetration of a Model Razor Clam: Insights from DEM Simulation”. In: B2G Atlanta 2018 Bio-mediated and Bio-inspired Geotechnics. Atlanta, GA, Aug. 2018.

[20] Pandey, G and J. Tao. “Moisture Sensitive Polymer-Modified Enzyme-Induced Carbonate Precipitation for Soil Improvement”. In: B2G Atlanta 2018 Bio-mediated and Bio-inspired Geotechnics. Atlanta, GA, Aug. 2018.

[21] J. Tao, J. Li, X. Wang, et al. “Nature-Inspired Bridge Scour Countermeasures: Streamlining and Biocementation”. In: Journal of Testing and Evaluation 46.4 (May. 2018), pp. 1376-1390. DOI: 10.1520/JTE20170517.

[22] R. Bao, J. Li, L. Li, et al. “Bio-Inspired Bridge Scour Countermeasures: Streamlining and Biocementation”. In: DEStech Transactions on Materials Science and Engineering. Shandong, China, 2017. DOI: 10.12783/dtmse/ictim2017/10180.

[23] S. Huang and J. Tao. “A DEM Study of Penetrating in Granular Materials with Changing Shape”. In: TRB 96th Annual Meeting Compendium of Papers. Washington, DC, 2017, p. 14.

[24] S. Huang and J. Tao. “Penetrating in Granular Materials: Effects of Penetrator Dynamics”. In: Geotechnical Frontiers 2017. Orlando, Florida: ASCE, Mar. 2017, pp. 604-613. DOI: 10.1061/9780784480441.063.

[25] J. Li and J. Tao. “Experimental Investigation of the Pier Streamlining Effect on Bridge Local Scour under Clear Water Conditions”. In: Geotechnical Frontiers 2017. Orlando, Florida: ASCE, Mar. 2017, pp. 20-28. DOI: 10.1061/9780784480465.003.

[26] X. Sun, J. Tao, J. Li, et al. “Aeroelastic-aerodynamic analysis and bio-inspired flow sensor design for boundary layer velocity profiles of wind turbine blades with active external flaps”. In: Smart Structures and Systems 20.3 (Sep. 2017), pp. 311-328. DOI: 10.12989/sss.2017.20.3.311.